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A survey of results is presented from a theoretical investigation on the rheodynarnics of powder materials in their 
high-temperature deformation. 

For studying the processes of deformation of powder materials under SHS compaction and analyzing nonisothermal flow 

of compressible media in various zones of equipment rheodynamic models are used [1, 2], whose basic parameters are macro- 

scopic density, velocity, and stresses in the material. These models are a complication of the earlier formulated thermal models 

[3, 4], describing the processes of cooling of combustion products and their heat exchange with the ambient medium. 

The fundamental problem of theoretical consideration within the framework of rheodynamic models is finding the 

dependence of the density of a porous body on the applied pressure - the kinetics of its compaction. In doing this, it is impor- 

tant to answer a number of practical questions: 

In what qualitatively different regimes does compaction of powder compressible media occur? 

What is the influence of the thermal factor on the metal pressing? 

In what cases is the material compacted but not extruded or, on the contrary, is extruded without compaction? 

Of importance in the development of rheological models is the selection of rheological equations. We will note that 

powders of high-melting compounds are a special object, little investigated in the rheological context. In the theory of sintering 

and hot pressing the knowledge of such materials as of highly viscous liquids in the region of premelting temperatures is the 

most widespread [5]. 

The present work surveys the results of mathematical modeling of deformation and thermal processes of SHS compac- 

tion. Analytical solutions of the problem of one-sided compression and extrusion of powder materials are found which enable us 

at a qualitative level to establish different regimes of compaction and extrusion and to find criterial conditions for their realiza- 

tion. A numerical analysis of the influence of the nonuniformity of the thermal regime and the conditions of heat transfer on the 

regularities of compaction and extrusion of the material is performed. 

1. Analytical Models of Hot Compaction of Powder Materials. Interest in the problem of one-sided compression of a 

viscous porous material was brought about both by the development of technology of hot-pressing methods and by the study of 

the high-temperature rheology of powder materials. At the initial stage it was considered under the assumption of the uniformity 

of density and the lack of friction on the wails [6]. The analytical solution obtained was used for selecting viscosimetric and 

rheological variables and creating methods for the determination of a priori unknown properties of the material and parameters 

of their dependence on density. Special features of the above-mentioned type of deformation with allowance for the 

nonnniformity of density distribution are investigated in [7]. As a result of a numerical solution of the problem the density, 

velocity, and normal stress profiles are determined for different regimes of hot pressing. The analytical solutions of the problem 

of one-sided compression of porous material made it possible to establish new regularities of the process, which expand the 

physical knowledge of it, and to reveal qualitatively different regimes of compaction - the regular regime and the wave one. A 

theoretical description for each of these regimes individually is given below. 

Regular Regime of Compaction. For describing the selected type of flow of compressible powder material in the theory 

of hot pressing we used the system of continuity equations 
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in combination with the rheological relations 
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At the initial instant the density distribution with the compact height is specified: 

�9 p (z ,  0 )  = p0 (z) .  (3)  

At the lower boundary the condition of no-flow operates: z = 0: V = 0. At the upper boundary of the compact depending on 

the deformation conditions two types of boundary conditions should be distinguished: the regime with a specified force of the 

plunger of the press (Crzz = - P ( t ) )  and the regime with a specified velocity of movement of the plunger (V = V(t)). 

We adopted the following empirical dependences of the shear/~ and bulk ~ viscosities on density: 

4 p (4) [X(p) = [~10 m, ~ (p) = -~- [l,(p) 1 - - - p  " 

We will note that in solving the system of equations considered one frequently disregards the inertial and nonstationary terms in 

the equation of motion and substitutes for these equations the simpler conditions of equilibrium 

aa~z = O. (5) 
az 

One usually relates these assumptions to the smallness of the Reynolds number for the processes of hot compaction of 

high-melting powder materials, which is substantiated by the estimating calculations [7]. The problem was solved in the Lagran- 

gian (q, t) coordinates, permitting us to obtain the analytical solutions and providing certain advantages in the interpretation of 

the results. The physical meaning of the Lagrangian coordinates is described in [8]. The kinetic equation of compaction 

Op 3 P (t) 1 - -  P 

Ot 4 Ix1 pm+z ' (6) 

obtained on condition that the regime with the specified force of pressing is realized, may serve both for calculating the density 

distribution and for solving reverse problems, for example, for estimating the pressing time or viscosity of the solid base with the 

known density distribution. We will observe that, according to (6), the compaction rate with the initial nonuniform density 

distribution does not depend explicitly on the mass coordinate q and is presented in the form of the product of  functions, one of 

which is dependent on time t, and the other - on density p. Exactly the same form of the kinetic equation is obtained in [6] for 

the case of a uniform density. Hence the important deductions of the character of the compaction process follow. Compaction of 

any separated individual volume of material with initial density P0, for a nonuniform initial density distribution along the 

coordinate q, occurs in the same manner as for the uniform one, with the same initial density. By analogy with the thermal 

regular regime, this regime of compaction can be called regular. Taking the linear dependence of shear viscosity on density (m = 

1) and the constant force on the plunger, we can obtain the following expression for the distribution of the material porosity 

H =  1 - p :  

/7 (q, t) = / 7 o  (q) exp ( - -  t / t , ) ,  (7) 

where t. = 4/~1/3P is the characteristic time of compaction. It can be seen that with time t > t .  independently of H0(q) the effect 

of self-equalization takes place, which was discussed in [7]. We will also point out that, according to (7), the characteristic time 

of compaction is equal for all individual volumes within the compressed material. This relation is convenient to use for deter- 

mining the molding time of the material to the specified residual porosity. 

Wave Regime of Compaction. Strictly speaking, the possibility of disregarding the inertial and nonstationary terms in the 

equation of motion is determined not only by the smallness of the number Re, but also by the value of partial derivatives of 
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velocity with respect to the coordinates and time. At the same time it is inertness that determines a number of  fundamental 

properties of the process. It is essential that for inertial media the disturbance from the plunger will  propagate throughout the 

bulk of the material not instantaneously, thus creating prerequisites for forming a compaction wave in the porous medium. With 

the aim of investigating other regimes different from the regular one, we  have found the solution of the problem of one-sided a 

compression in the form of compaction wave. The idea of intermediate asymptotics is used in this case. The compressible 

medium is considered infinite, and the boundary conditions are specified on z = __. oo. With z = - 0% the material is stationary and 

is not compacted: 

p ( - - o o ) = p 0 ,  V ( - - c o ) = 0 .  

With z = + ~  we take the following conditions on the plunger: 1) for the regime with the specified velocity: p(+r162 = 1, 

V(+r = Vp; 2) for the regime with the specified force: p(+oo) = 1, azz(+Oo) = P. 

Assuming the existence of a compaction wave moving across the material with a constant velocity c = const, and going 

to the system of coordinates which is related to the running wave [9], we determine the following profiles of density, velocity, 

and stresses in the material: 

p (z) = P0 q- a exp (Re ~) 
1 Jr" a exp (Re ~) ' 

a exp (Re ~) 
V (z) ---- c q- ~ -~ Vp P0 exp (Re ~) '  (8) 

~r(z) %Vp~a Apoexp(Re~) , 

, 1 - -  p p~ exp (Re ~) 

where 

a =  p * - p ~  A =  p i c ( 1 - - p 0 ) .  ~__ z . 

1 - -  p ,  go H0 

P . - ~ P i ~ = 0 ) ;  ] ---- p (V - -  c); % = 4 1 h / 3 ;  

H 0 is the length of the product; j is the specific flow. 

The work defines the boundaries of  applicability of  the constructed wave solution. It is obvious that the necessary 

prerequisite for realization of the compaction wave in a porous medium is the condition of smallness for the characteristic size 

of the wave as compared with the dimensions of the pressed material, i.e., 6 < H 0, where 6 is the width of the wave front. Using 

(8) the width of the compaction wave front is expressible !n terms of the characteristics of the compact (viscosity and density of 

the incompressible carcass) and the velocity of movement of the plunger: 

6 =  4 H0 lne  ~ =  4 ~t----L-1 Ine  2, 
3 Re 3 piYp 

where e is a small quantity. It is evident that depending on the specific value of the Reynolds number the density profiles may 

have a qualitatively different form, and, consequently, it is possible to realize qualitatively different regimes of compaction: the 

regular regime (corresponding to a highly diffuse front of  compaction) and the wave one, in which the compaction is localized in 

a narrow zone of compression (this regime corresponds to rather large Re numbers). 

Taking into account the limiting character of both regimes, it is important to consider all varieties of regimes for 

compacting the porous powder mass, converted into a high-temperature state, as well as to investigate transient processes, 

realized in the intermediate, according to Reynolds, zone. The solution of these problems is possible within the framework of a 

generalized model, which includes the system (1) in its complete form, the boundary conditions (2), and the conditions at the 

compact boundary (3) [10]. The analysis of the results of numerical experiment made it possible to find criterial conditions for 

realizing various regimes of compaction of the hot porous mass. As a criterion determining the presence of this or that compac- 

tion regime we chose the generalized Reynolds number, the expression for which is obtained in [9] 

~ p  l - - P o  p~Ho 
Re .  (P) - -  PoPl 
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Fig. 1. Density and velocity distribution with the height of the compact at various instants for 

the regular regime of compaction: t 1 < t 2 < t 3. 

Fig. 2. Density and velocity distribution with the height of the compact for the wave regime of  

compaction: t 1 < t 2 < t 3. 

It is actually a dimensionless complex, dependent on rheological and physical properties of the compressed material, dimensions 

of the compact, and technological parameters of the process, more convenient for analyzing the flow of the material with the 

specified force on the press. It is found that in the range Re < Re.  = 1 one of the limiting cases occurs - the regular regime of 

compaction, which corresponds to the linear form of the velocity profile and to simultaneous compaction of all individual 

volumes within the hot porous mass, The boundary value of  Re.  corresponds to Re -- 1. For example, at fit = 107 Pa .sec, ,01 = 

5.103 kg3/m (which corresponds to high-melting metal powders converted into the high-temperature state), P = 109 Pa, H 0 = 

0.1 m, the number Re = 0.2 < Re.  (Fig. 1), which fits a pronounced regular regime in which the system has no time to feel the 

inertial factor since the time of hydrodynamic stabilization in this case is substantially smaller than the characteristic time of 

compaction: t h = Ho2p1//21 - 10 -6  << t, = 4/~1/3P - 10 -3. 

Another limiting case - compaction of the hot porous compact in the wave regime - is realized in the range Re > Re**, 

starting with some lower boundary Re** = 25. In the process of numerical calculation we can find the wave regime time, 

conditioned by the unsteadiness of the process: for instance, at/~1 = 104 Pa .sec, Pl  -- 103 kg/m3 (which is characteristic of 

polymer materials), P = 10 l~ Pa, H 0 = 0.1 m (Re - 45) attaining the wave regime takes place for the time ty -- 10 -7  sec (Fig. 

2). In this range for analyzing the processes of flow we could use the approximate wave solution of the problem given above. 

The values of  the Reynolds number, located between the boundary values Re,  and Re**, are consistent with transient 

regimes of  compaction. These regimes (Fig. 3) combine properties of the wave and regular regimes, but depending on the 

specific value of Re display them to a greater or lesser extent. If Re is close to Re,  then the transient regime is closer to the 

regular one in its properties. There exists a substantial feature, however, no effect of self-equalization of  density from the outset 

of the process. There is more to be said - when the initial density throughout the volume of the material is equal, then in the 

transient regime a density gradient emerges during hydrodynamic stabilization. If Re is close to Re**, then the transient regime 

is closer to the wave one, but with a rather diffuse, broad compaction wave front. 

2. Analytical Model of  Extrusion of  Powder Materials. Models of plunger extrusion for incompressible ductile and 

viscous materials [11-15], which are usually considered for the majority of polymer and metal systems, are theoretically well- 

developed and investigated. However, these models often turn out to be inapplicable for describing the process of  treatment by 

pressure of compressible powder high-melting compositions. The characteristics of rheological behavior of  these materials, as 

well as a combination of the processes of  compaction and extrusion, require a separate consideration for these systems. Investi- 

gated below is the process of  extruding viscous compressible materials out of a chamber through the slot into a guide gauge. The 

model of the process formulated and the method employed for solving the problem in the Lagrangian coordinates enabled us to 

obtain an analytical solution of the problem and to find the distribution of density, and velocity in the chamber and in the 

extruded rod. 
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Fig. 3. Density distribution along the coordinate: a) Re --, Re,;  b) Re --, Re**. 

To describe the flow of the viscous porous material out of a cylindrical chamber, bounded at the top by a moving 

plunger, into the gauge, we use the system of equations (1)-(3), (5) with the following boundary and initial conditions [1]: 

azzb~_~,(t) = - -  P, p (t)h=0 = 90 (z), (9) 

where H(t) is the time dependence of the compact height. Extrusion of the material usually occurs into a die of conical shape, 

which is not taken into account in this consideration. This assumption is valid for a relatively short conical portion. Within the 

framework of the simultaneous approach the motion of the material is characterized by two parameters, the relative change in 

density and hydraulic resistance, dependent on the applied force: 

9 (0_, t)/9 (0+, t) = B (Icrzz (0)l), 

- -  s~p~o (o_, t ) v ( o _ ,  t) = f(l~z~ (0)1). 

The quantities B and f are defined by the die shape and rheological properties of the material. The work assumes B = 1, i.e., the 

absence of recompaetion in the die. This approximation is acceptable when the major compaction takes place in the chamber. 

The dependence f(lazz(0) I ) for simplicity is approximated by a power dependence: f( l azz(0) I) = k lazz] n. The parameters k 

and n may be calculated from experimental data. 

We found the analytical solutions which permitted us to perform the analysis of the limiting regimes of extruding the 

material without compaction and compacting the material with subsequent extrusion. The basic dimensionless parameter 

determining the process of  compaction and extrusion is x = textr/t., which characterizes the relation of the extrusion time textr = 

qo ~ ,  P = kpns1/SoOl, and the compaction time t.  = 4kc1/3P. From Fig. 4 it is seen, that at small values of x(ln x << - 1 )  the 

specimen is extruded uncompacted (Pmax = P0), and with In x >- 1.5 compaction and then extrusion of the material occurs (Pmax * 

1). With - 1  < In x < 1.5 the processes of compaction and extrusion proceed in parallel. In essence, we have provided the 

answer to the question of a stage-by-stage consideration of the process of SHS extrusion. The stage-by-stage character of 

extrusion does not always take place. In practice this favorable situation should be maintained by various methods. For instance, 

this case is realized for a narrow slot with a large hydraulic resistance. 

3. Nonisothermal Rheodynamics of SHS Pressing. The analytical solutions obtained made it possible to evaluate the 

conditions for realization of a quasiisothermal regime of compaction, in which the very process of  pressing is not accompanied 

by a noticeable change of temperatures. However, in practice the nonuniformity of the thermal regime in the material and the 

conditions of  heat transfer have a substantial effect on the distribution of densities, velocities, and stresses in the material, and 

consequently on the quality of  the finished products. For studying the s tress-strain state of the material under conditions of 

substantial nonisothermicity of the process we formulated a model of SHS compaction [2] which includes not only the equations 

of rheodynamics (1)-(3), (5) but also the heat-transfer equation 

o (~(0) --r0) c3T~ 2 r  o(ov )] 
cpl \ Ot O ~  ro (lO) 

with the additional boundary conditions for temperature 

~(p)~z ={~I(T--To), z = O ,  (11) 
~2 ( r  - -  To),  z = H( t )  
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Fig. 4. Limiting density Pmax as a function of In ~: 1) region 

of extrusion of uncompacted material; 2) region of under- 

compaction; 3) extrusion of maximally compacted material. 

and the initial temperature distribution in the specimen 

T (z, 0) = To (z). (12) 

It should be noted that for the shear p and bulk ~ viscosities we take account of their dependence not only on the density but 

also on the temperature: 

F (9, T) = ~t 1 (7') bt~ (p) = F1 exp (U/RT) Ore, 
4 T) : --~-ll(9, T) 9 =Flexp(U/RT) 9'n+i 

1 - - 9  1 - - 9  

(13) 

To compare the results of numerical solutions with the analytical solution of the isothermal problem of one-sided 

compression obtained earlier in [8] and to simplify the initial system of equations (the equation of heat conduction in the 

Lagrangian system of coordinates is written in the convergent form) the problem was solved in the Lagrangian mass system of 

coordinates. The numerical calculations are in good agreement with the analytical solution of the isothermal problem only under 

adiabatic conditions [2]. If there is heat transfer between them, there is a considerable discrepancy. As an analysis of the 

numerical calculation showed, with nonisothermal pressing the following qualitatively different regimes of compaction are 

realized: 1) regime without compaction; 2) regime of maximal compaction; 3) regime of undercompaction. The decisive factors 

in the realization of one or another regime of pressing are the initial viscosity (at the combustion temperature) and the range of 

its change within the characteristic temperature interval (from the combustion temperature to the viable temperature). 

The regime without compaction is realized when the viscosity of the solid base is sufficiently large. The critical value of 

viscosity above which this regime is realized is found by numerical calculations. It is the viscosity of the solid base or, in other 

words, the ductility of the grains of the solid carcass that is the decisive factor here. This factor determines the resistance to 

deformation in compaction, and consequently also the intensity of this process. We will note that in this regime the thermal 

processes and those of compaction weakly affect each other, i.e. proceed independently. In this case we can use the thermal 

model of SHS pressing [3] (without taking rheodynamic factors into account), proposed by the authors earlier. The regime of 

maximal compaction is realized when the initial viscosity of the solid base during the process always remains lower than the 

critical one, and changes slightly with temperature. In this case the processes of compaction do not depend on the temperature 

(on account of the dependence of the thermophysical properties on this variable). The regime of undercompaction is realized 

when the initial value of viscosity of the incompressible base of the material is lower than the critical one but due to the strong 

dependence on the temperature its value in the course of the process turns out to be higher than the critical value. Under the 

conditions of this regime the thermal processes and the processes of compaction proceed correlatively. Thus, variation of 

parameters of the temperature dependence of the solid base viscosity alone ensures a continuous transition from one regime of 

compaction to another. 

In [7-8] it is noted that in the case of isothermal compaction of compacts with a nonuniform initial density distribution 

there is an effect of self-equalization of density along the height of the compact. The presence of heat losses, on the contrary, 

often contributes to a substantial increase of the initial heterodensity in the material; this effect increases as the viscosity 

increases and the heat insulation of less dense layers Of the material remains weak: 
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An important technological parameter of SHS compaction is the delay time (the time from the onset of the initiation of 

the chemical reaction to the pressure supply). The effect of this parameter on the distribution of density and stresses in the 

material is studied. It is shown that as the delay time increases due to strong cooling of the material from the ends the difference 

of radial stresses over the specimen increases, and an ever increasing portion of the material near its ends remains undercom- 

pacted; the maximal density of the material also becomes substantially lower. 

The limiting value of density and the time the material remains in the plastic state depends on the conditions of heat 

transfer (Blot numbers) and on the technological parameters. An analysis of numerical results shows that the condition of 

existence of the compaction regime is some boundary curve Fo3-Bi  (Fo 3 is the delay time in the dimensionless form), below 

which lies the working region of SHS pressing, and above which the material turns out to be undercompacted (Fig. 5). 

4. Nonisothermal Rheoflynamics of Extrusion of Compressible Materials. The analytical solution obtained in [1] for the 

problem of extrusion of a material out of the chamber took no account of the nonisothermicity of the process of SHS extrusion. 

In practice, thermal nonisothermicity leads to a nonuniform compaction, and in the final analysis to the deterioration of 

properties of the product obtained. 

To describe flow of the material out of a cylindrical mold to a guide gauge we will use the system of equations of 

continuity and equilibrium together with the rheological relations (1)-(3), (5) and the boundary and initial conditions (9). The 

unknown relative density p and velocity V here are functions solely of the coordinate z and time t. The dependence of shear and 

bulk viscosities on density and temperature is taken into account [13]. 

For studying the effect of the thermal factor on the stress-strain state of the material we added to the system of 

equations the equations of heat conduction for the material (the subscript i = 1 in the chamber, i = 2 in the gauge). 

[ 0(pT~) -F O(pVT~)I= 0 (X(p) O--~T~I--2a~(T~--To) 
CO1 Ot dZ J ~ O Z  OZ / ri 

with the boundary and initial conditions 

z = H (t):~, (p) OTI 
Oz 

- - = - - a a ( T 1 - - T o ) ,  z~---L( t ) :~(p)OT2 Oz = ~ 3 ( T 2 - - T o ) ,  

c3Ti 
z=0:T1----T~,  J ~ = @ i l ,  J i = - - ; ~ ( P ) - ~ z  - - ( i = l '  2), 

T1 (z, 0) = T2 (z, 0) = r ,  (z). 

Here we assume that the temperature across the section z = const of the compact is constant due to its small transverse 

dimension in comparison with the length and the thermophysical properties of the material do not depend on the temperature. 

Heat removal in the transverse direction is taken into account by the last terms of the equations of heat conduction. 

The movement of the upper H(t) and lower L(t) boundaries of the specimen is taken into account in the model by the 

equations 

dH (t) d (-- L (t)) = V (0_, t), 
dt -- Vp~(t), dt 
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V(0_, t) is the velocity of the material at z = 0 in the rod: 

k p  n 
V (0_, t) - -  

p~p (0, t) 

To make a direct comparison with the analytical solution of the isothermal problem of extrusion and to simplify the 

system of equations (to write the equations of heat conduction in divergent form), and also to reduce the number of transient 

boundaries (instead of two transient boundaries of the region, i.e., the upper H(t) and lower L(t) boundaries, we obtain one 

transient boundary, corresponding to the die hole z = 0), we will go over to the Lagrangian mass system of coordinates [1]. 

The system of equations was reduced to a dimensionless form and solved numerically using the conservative balance 

schema, i.e., the schema ensuring accurate (without regard to a round-off error) consistency with the laws of conservation on any 

grid in the finite region, containing an arbitrary number of nodes of the difference grid [16]. 

As a result of the numerical solution of the problem we establish the distribution of temperature, density, velocity, and 

stresses for the material in the mold and for the rod, produced by extrusion, at any instant. The end of the calculation was either 

the condition of attaining the temperature in the die hole, which is lower than the viable temperature (the temperature, above 

which the material retains its ductility and below which it freezes) or the complete extrusion of the material, i.e., attaining a 

value close to unity by the transient boundary. 

As the calculations show, good agreement of the time dependences of density, obtained analytically and numerically, 

takes place solely under adiabatic conditions. If there is heat transfer between these dependences, there is a substantial discrep- 

ancy. 

Earlier, on [17] it was shown that there exist three different regimes of extrusion: the quasistationary regimes of 

extrusion without compaction and of maximally compacted material, and the intermediate regime. Realization of one or another 

regime was dependent on the parameter x, determined by the relation of the characteristic times of compaction and extrusion. 

Under the nonisothermal conditions of deformation of the material the thermal factors affect the characteristic time of compac- 

tion in terms of viscous properties and their temperature dependences. Varying the temperature regime before pressing in one 

way or another, one should provide such a level or theological properties which would produce the optimal relation between the 

characteristic times of compaction and extrusion. 

One of the determining parameters in selecting the technological regime of forming the product is the delay time. Figure 

6 shows the density distribution with the height of an extruded rod for various delay times. Curve 4 (Fig. 6) corresponds to the 

regime without compaction revealed in [17], curves 1, 2 - to the regime of maximal compaction of the end portion of the 

specimen, curve 3 - to the regime of undercompaction along the entire length of the specimen. 

Within the framework of the present model, in contrast to the isothermal consideration of the process of SHS extrusion, 

according to the analytical model [1], it is possible to describe the conditions for realization of the regime of clogging of the die 

outlet. The condition of clogging was determined by the viable temperature of the material above the die outlet, much as it was 

performed in the thermal model (see [3, 4]). However, in practice, what matters is not only whether the clogging will happen or 

not but also what density distribution along the length of the extruded portion depending on the delay time is. Curve 1 (Fig. 6) 

is consistent with the case when the entire rod has the density >0.99 excluding its small portion (less than 5%). It is precisely 

this density distribution that is the most favorable in terms of practice. As the delay time increases up to 5 sec, a portion of the 
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material is not extruded; however, the density of the larger portion of the extruded material is close to unity. As the delay time 

increases further the portion of the extruded material decreases (curves 3, 4, Fig. 6), and the porosity of the rod itself is high. 

NOTATION 

t, time; r, z, transverse and longitudinal coordinates; p, relative density of the material; Pl,/ '1, density and viscosity of 

the incompressible base of the material;/,, ~, shear and bulk viscosities of the material; Crrr, or00, azz, radial, tangential, and axial 

stresses; S 0, S 1, cross-sectional areas of the chamber and the gauge; P, force on the plunger of the press; qo, relative mass of the 

compact; • dimensionless parameter, i.e., the relation of the characteristic times of compaction and extrusion; V, velocity of flow 

of the material; K1, n, experimental parameters of hydraulic resistance of the die hole; Pmax, maximal value of relative density; 

P0(q), initial density distribution throughout the bulk of the compact; a 3, a 4, heat-transfer coefficients at the lower and upper 

ends of the compact; ~ = SJS 0, degree of deformation. 
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